

HERZLICH WILLKOMMEN! RAUMLUFTTECHNIK

Online-Seminar mit Dietmar Zahn 09.12.2022, 10:00 – 11.30 UHR

ORGANISATORISCHE HINWEISE

- Fragen bitte über die Chatfunktion stellen die Fragen erscheinen nur bei den Organisatoren und sind somit anonym
- Fragen werden gesammelt und am Ende des Vortrags oder direkt beantwortet
- Antworten auf ungeklärte Fragen erhalten Sie im Nachgang persönlich
- Folien werden auf der Webseite www.plusplusprinzip.de zur Verfügung gestellt

VORSTELLUNG

- Beratungs- und Softwareunternehmen für Energie- und Ressourceneffizienz seit 1999
- Ein Unternehmen von Veolia seit 2016
- CO₂-Vermeidung und –Reduzierung durch technische und organisatorische Maßnahmen
- Erfahrung in allen relevanten Industriebranchen, Gewerbe und Gebäuden
- Interdisziplinäres Team mit 50 Mitarbeitern

Dietmar Zahn

Leading Consultant

ÖKOTEC Energiemanagement
GmbH

AGENDA

- 1. Raumlufttechnik in der Ernährungsindustrie
- 2. Grundlagen der Raumlufttechnik
- 3. Energieeinsparpotentiale

RAUMLUFTTECHNIK IN DER ERNÄHRUNGSINDUSTRIE

TYPISCHE ANWENDUNGSGEBIETE VON RAUMLUFTTECHNIK IN DER ERNÄHRUNGSINDUSTRIE

Konditionierung der Arbeitsräume

Einhaltung ASR

Abführen von:

- Stofflasten
- Feuchtelasten
- Wärmelasten

Konditionierung der Produktionsräume

z.B. Reiferäume bei Wurstwaren

Abführen von:

- Stofflasten
- Feuchtelasten
- Wärmelasten

Thermische Prozesse

- Trocknen
- Rösten

Die zugrundeliegende Lufttechnik ist prinzipiell identisch

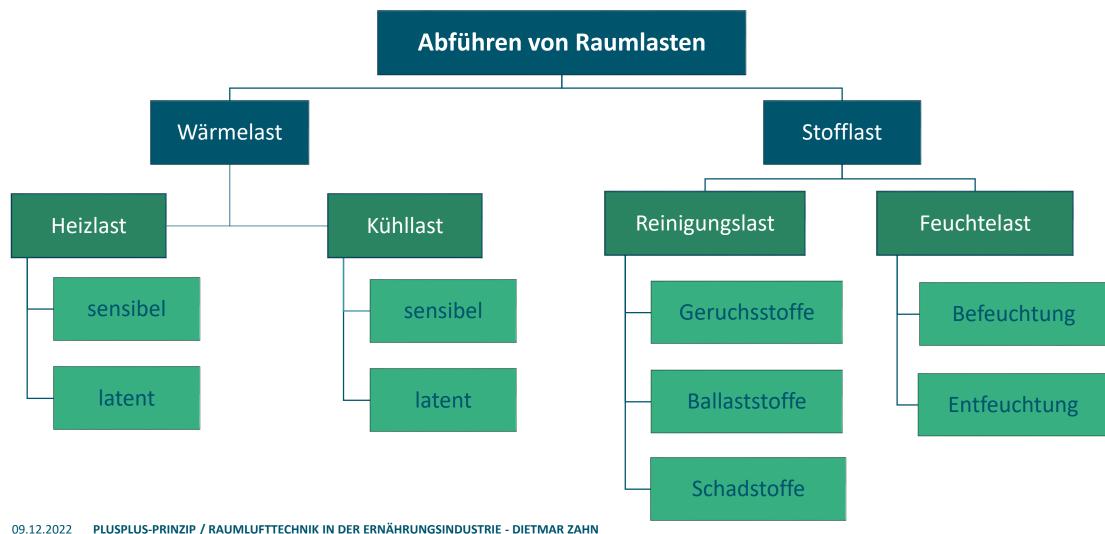
RAUMLUFTTECHNIK IN DER ERNÄHRUNGSINDUSTRIE

WAS KOSTET EIN KUBIKMETER LUFT?

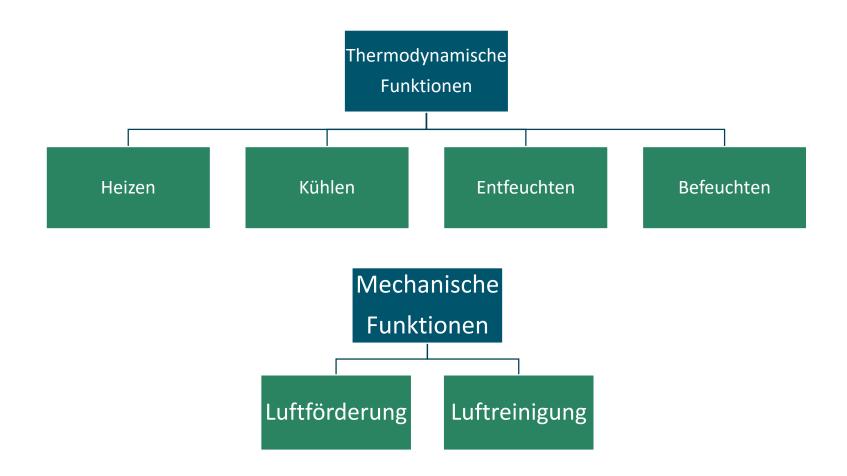
Kosten von Austausch und ggf. Behandlung der Raumluft:

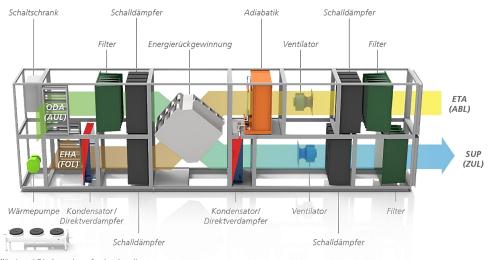
Lüftung	Einheit	ohne WRG	mit WRG	Verhältnis mit/ohne WRG
Luftförderung	€/a/(m³/h)	1,5	2	
mit Heizen	€/a/(m³/h)	5,14	2,50	49%
mit Heizen & Kühlen	€/a/(m³/h)	8,07	4,59	57%

Annahmen:


09.12.2022

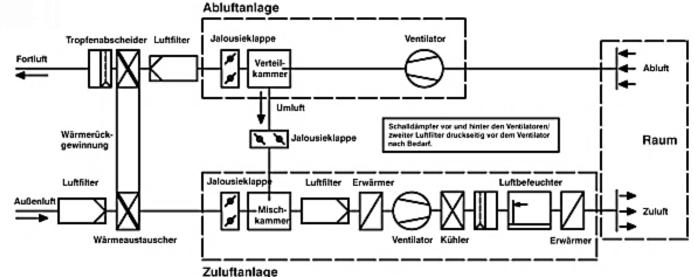
Wärmepreis 110 €/MWh, Strompreis 250 €/MWh 8.760 Betriebsstunden, SFP Zuluft 1,5 kW/(m³/s), SFP Abluft 1,0 kW/(m³/s) Zulufttemperatur 20°C, Ablufttemperatur 23°C Rückwärmezahl 60%




AUFGABEN DER RAUMLUFTTECHNIK

FUNKTIONEN & PROZESSE VON RLT-ANLAGEN

BAUELEMENTE RAUMLUFTTECHNISCHER ANLAGEN



- Ventilatoren
- Lufterwärmer
- Luftkühler
- Wärmerückgewinnungssysteme

Externer Verflüssiger / Direktverdampfer (optional)

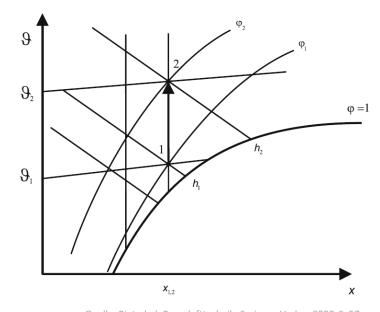
Quelle: https://www.wolf-geisenfeld.de/de/rlt-geraete/ausfuehrungen/kaeltetechnik

- Befeuchter
- Entfeuchter
- Luftdurchlässe

Quelle: Bedienen von Raumlufttechnischen Anlagen in öffentlichen Gebäuden, Geschäftsstelle des AMEV im Bundesministerium für Verkehr, Bau und Stadtentwicklung (BMVBS)

LUFTBEHANDLUNG - HEIZEN

Heizen mittels


- Wasser-Luft-Wärmeübertrager (Heizregister) (häufiger Einsatz)
- Dampf-Register
- Flächenbrenner (im Luftstrom installiert)

Änderung des Luftzustandes

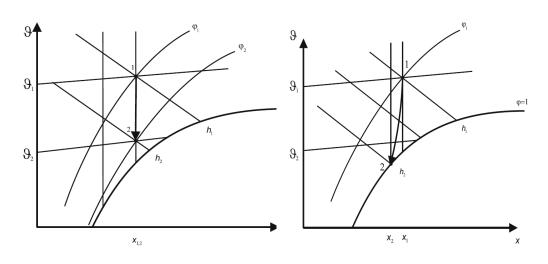
- Temperaturerhöhung
- Absolute Feuchte bleibt konstant
- Prozess der Lufterwärmung verläuft daher im h,x-Diagramm auf einer Linie konstanter Feuchte nach oben

Quelle: Trox GmbH, Xcube Planungshandbuch

Quelle: Rietschel, Raumlufttechnik, Springer-Verlag, 2008, S. 57

LUFTBEHANDLUNG - KÜHLEN

Kühlen mittels

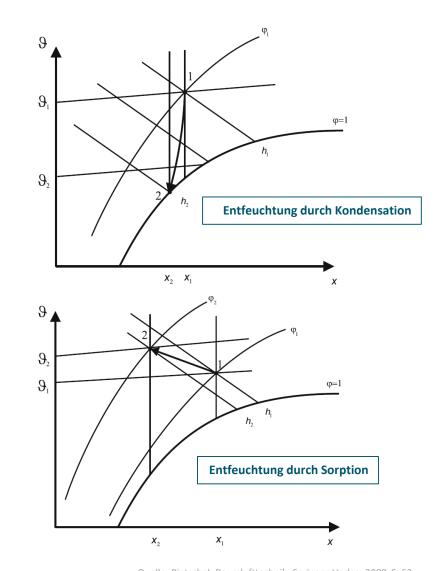

- Wasser-Luft-Wärmeübertrager (Kühlregister) (häufiger Einsatz)
- Direktverdampfer

Änderung des Luftzustandes

- Temperaturabsenkung
- Absenkung der Feuchte, falls Registertemperatur unterhalb der Taupunkttemperatur (ist die Regel)

Quelle : Trox GmbH, Xcube Planungshandbuch

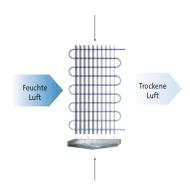
Quelle: Rietschel, Raumlufttechnik, Springer-Verlag, 2008, S. 60 ff


LUFTBEHANDLUNG - ENTFEUCHTEN

Entfeuchten mittels

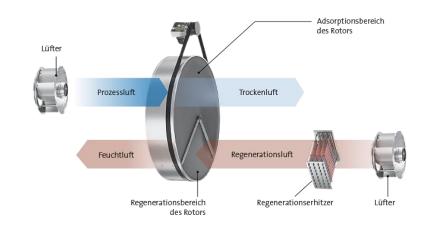
- Kondensation (Kühlung unterhalb der Taupunkttemperatur)
- Adsorption (Silikagel, Zeolith)
- Absorption (Salzlösung)

Änderung des Luftzustandes


- Bei Kondensationsentfeuchtung mit gleichzeitiger Temperaturabsenkung
- Bei sorptiver Entfeuchtung n\u00e4herungsweise isenthalp mit Temperaturerh\u00f6hung

Quelle: Rietschel, Raumlufttechnik, Springer-Verlag, 2008, S. 63

LUFTBEHANDLUNG - ENTFEUCHTEN


Kondensationsentfeuchter

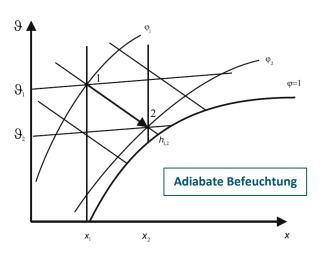
Funktionsweise

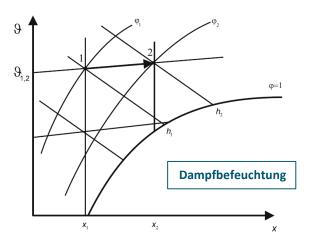
- Entfeuchtung durch Abkühlen unter den Taupunkt
- Kondensat fällt dabei an und muss dabei abgeführt werden
- Kondensattröpfchen können durch den Luftstrom mitgerissen werden, daher Tropfenabscheider benötigt

Sorptionsentfeuchter

Funktionsweise

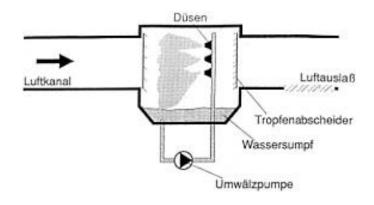
- Feuchter Luftstrom wird über Adsorptionsrotor (häufigster Einsatz von Silikagel) geleitet
- Gegenstrom wird vorm Regenerationsbereich/Trocknungssektor durch Regenerationserhitzer auf 120°C erhitzt
- Benötigtes Luftvolumen für Regeneration = 25% von Prozessluft
- Kleine absolute Feuchte möglich

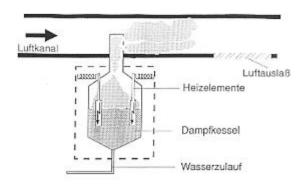

LUFTBEHANDLUNG - BEFEUCHTEN


Befeuchten mittels

- Adiabate Befeuchtung (Wasserverdunstung)
- Dampf

Änderung des Luftzustandes


- Bei adiabater Befeuchtung isenthalpe Zustandsänderung
- Bei Dampfbefeuchtung näherungsweise isotherm


LUFTBEHANDLUNG - BEFEUCHTEN

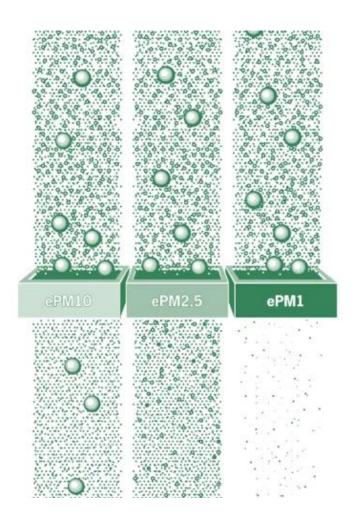
Adiabate Raumbefeuchtung

- Grobes Einsprühen von Wasser gegen Tropfenabscheider
- Hygiene: UV-Entkeimung, Abschlämmvorrichtung, zyklische Frischwasserzufuhr, Chemiezusatz

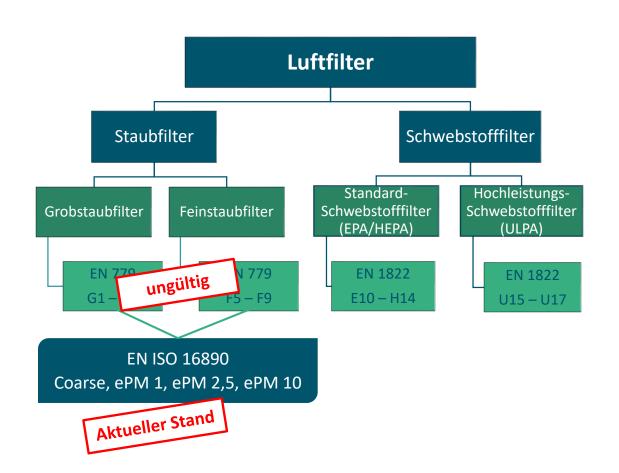
Isotherme Dampfbefeuchter

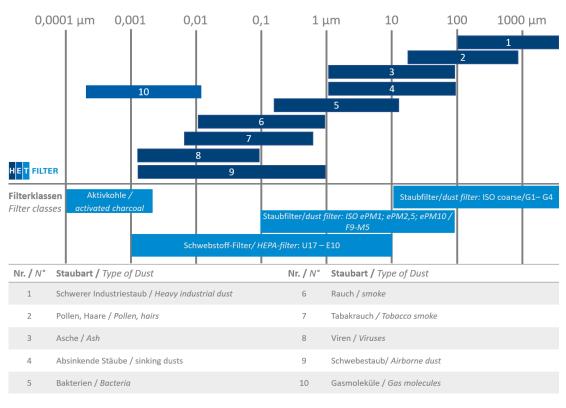
- Elektrische/gasbefeuerte Verdampfung von Wasser
- Höherer Energieeinsatz als adiabates System
- Höhere Wartungskosten

LUFTBEHANDLUNG - FILTER


Funktion

- Abscheidung von Stofflasten aus der Luft
- Schutz aller nachfolgenden Komponenten der RLT-Anlage


Luftfilter sind lt. Herstellerangaben zu reinigen und/oder zu ersetzen.


Wartungsintervalle

- Abhängigkeit von gefilterter Luftmenge/örtliche Gegebenheiten
- Filterzustand durch Drucküberwachung erfassen
- Wartung am sinnvollsten nach Frühling/Herbst

LUFTBEHANDLUNG – FILTERARTEN & EINSATZBEREICHE

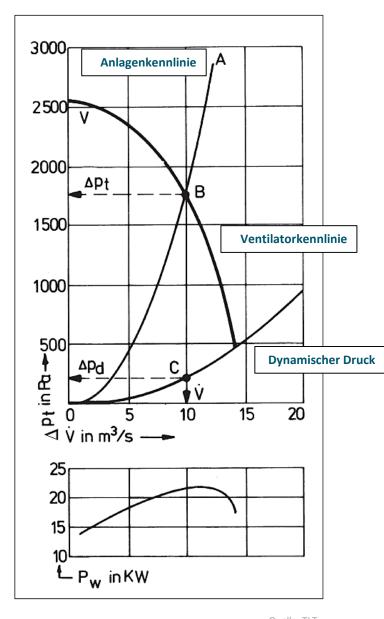
LUFTBEHANDLUNG - FILTERARTEN

Klassifikation der Luftfilter

- **DIN EN ISO 16890-1:2017-08 (neu)** > DIN EN 779:2012-10 (alt)
- Grad der Filtration basierend auf Feinstaub Partikelgröße
- Angabe der alten Filterklasse nur indikativ

ePM _{1 (Feinfilter)}		ePM _{2,5 (Mediumfilter)}		ePM _{10 (Mediumfilter)}		Coarse (Grobfilter)	
Neu	Alt	Neu	Alt	Neu	Alt	Neu	Alt
ISO ePM ₁ 95% - 80%	F9	ISO ePM _{2,5} 95% - 65%	F7	ISO ePM ₁₀ 95% - 65%	M6	ISO Coarse 95% - 60%	G4
ISO ePM ₁ 75% - 70%	F8	ISO aDM GOO/ EOO/				ISO Coarse 55% - 45%	G3
ISO ePM ₁ 65% - 50%	F7	ISO ePM _{2,5} 60% - 50%	M6	ISO ePM ₁₀ 60% - 50%	M5	ISO Coarse 40% - 30%	G2

LUFTFÖRDERUNG - VENTILATOR- UND ANLAGENKENNLINIE


Anlagenkennlinie

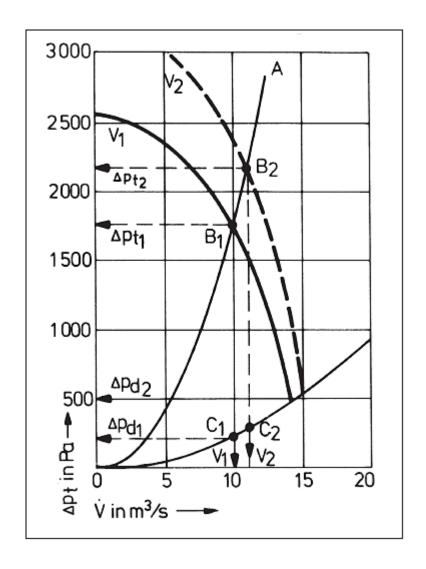
- Gibt Zusammenhang zwischen Luftmenge und notwendiger Druckerhöhung wieder
- Parabel
- Durch Regelorgane (z.B. Drossel) kann Kennlinie angepasst werden

Ventilatorkennlinie

- Gibt Luftmenge an, die gegen bestimmten (Total-)Druck gefördert werden kann
- Durch Drehzahlregelung ist Kennlinie anpassbar

Betriebspunkt (B) ist Schnittpunkt zwischen Anlagen- und Ventilatorkennlinie

Quelle: TLT


LUFTFÖRDERUNG - DREHZAHLREGELUNG

- Durch das Anpassen der Drehzahl verschiebt sich die Ventilatorkennlinie.
- Es ergibt sich ein neuer Betriebspunkt mit geänderter Luftmenge und Druck.
- Die Änderungen können mit Hilfe des Proportionalitätsgesetzes bestimmt werden.

$$\dot{V}_2 = \dot{V}_1 \cdot \frac{n_2}{n_1}$$

$$P_{w2} = P_{w1} \cdot \left(\frac{n_2}{n_1}\right)^3$$

$$\Delta p_2 = \Delta p_1 \cdot \left(\frac{n_2}{n_1}\right)^2$$

Quelle: TLT

LUFTFÖRDERUNG - SFP-WERT NACH DIN EN 16798-3:2017-11

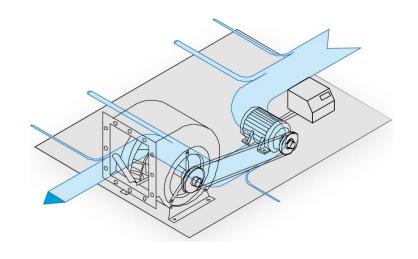
Kategorie	$P_{SFP} \\ [W/(m^3s)]$
SFP 0	< 300
SFP 1	≤ 500
SFP 2	≤ 750
SFP 3	≤ 1250
SFP 4	≤ 2000
SFP 5	≤ 3000
SFP 6	≤ 4500
SFP 7	> 4500

$$P_{\text{SFP}} = \frac{P}{q_v} = \frac{\Delta p_{tot}}{\eta_{tot}} = \frac{\Delta p_{stat}}{\eta_{stat}}$$

SFP bestimmt durch

- Druckverlust der Anlage
- System-Wirkungsgrad Ventilator

Druckverlust ist der bestimmende Faktor.


Nach GEG

- Zuluftventilator P_{SFP} = 1,5 kW/(m³s)
- Abluftventilator $P_{SFP} = 1.0 \text{ kW/(m}^3\text{s})$

LUFTFÖRDERUNG – WIRKUNGSGRAD-ÜBERSICHT

$\eta_{\text{faS}} = \eta_{\text{fa}} \cdot \eta_{\text{Motor}} \cdot \eta_{\text{Riemenbetrieb}} \cdot \eta_{\text{Regler}}$

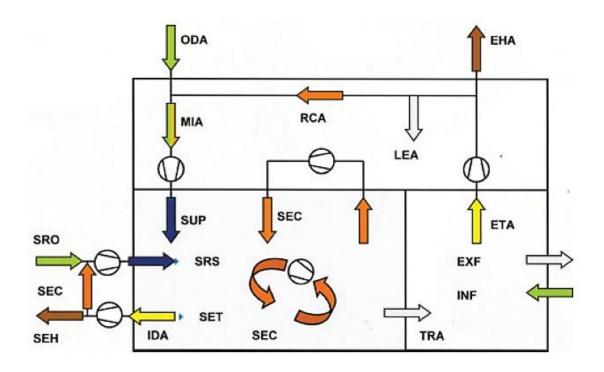
Formelzeichen	Bezeichnung	Wirkungsgrad-Bereich
η_{faS}	System-Wirkungsgrad	30% - 72%
η_{fa}	Wirkungsgrad des frei ausblasenden Ventilators	30% - 80%
η_{Motor}	Wirkungsgrad des Motors	50% - 95%
$\eta_{Riemenbetrieb}$	Wirkungsgrad des Riemenantriebs	80% - 97%
η_{Regler}	Wirkungsgrad des Reglers	95%

LUFTFÖRDERUNG – VENTILATOREN - BAUARTEN

Trommelradläufer mit vorwärtsgekrümmten Schaufeln

- flache Druck-Volumenlinie
- Antriebsleistung steigt parabelförmig mit steigendem Volumenstrom
- · häufig instabilen Kennlinienbereich
- · geringere Geräuschemissionen durch geringere Umfangsgeschwindigkeit
- · Wirkungsgrad max. 60%

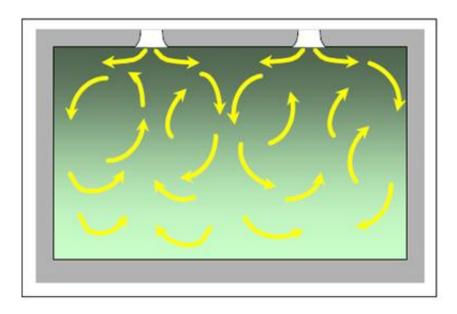
Hochleistungsläufer mit rückwärtsgekrümmten Schaufeln


- · steile Druck-Volumenlinie
- Antriebsleistung steigt bei steigendem Volumenstrom viel geringer an
- höhere Geräuschemissionen durch höhere Umfangsgeschwindigkeit
- · Wirkungsgrad max. 80%

Quelle: Blauberg-Motoren

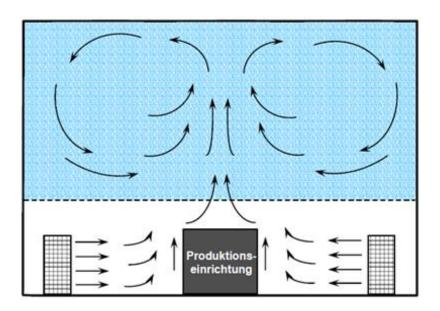
LUFTARTEN

Nr. (in Bild 2)	Luftart	Abkürzung	Farbe	Definition	
1	Außenluft	ODA	Grün	Unbehandelte Luft, die von außen in die Anlage oder in eine nung einströmt	
2	Zuluft	SUP	Blau	Luftstrom, der in den behandelten Raum eintritt, oder Luft, di die Anlage eintritt, nachdem sie behandelt wurde	
3	Raumluft	IDA	Grau	Luft im behandelten Raum oder Bereich	
4	Überströmluft	TRA	Grau	Raumluft, die vom behandelten Raum in einen anderen behan- delten Raum strömt	
5	Abluft	ETA	Gelb	Luftstrom, der den behandelten Raum verlässt und in die Luft- behandlungsanlage strömt	
6	Umluft	RCA	Orange	Abluft, die der Luftbehandlungsanlage wieder zugeführt wird und als Zuluft wiederverwertet wird	
7	Fortluft	EHA	Braun	Luftstrom, der die Abluftbehandlungsanlage verlässt und ins Freie strömt	
8	Sekundärluft	SEC	Orange	Luftstrom, der einem Raum entnommen und nach Behandlung demselben Raum wieder zugeführt wird	
				ANMERKUNG: Induzierte Luft in einem Induktionsgerät wird als Sekundärluft betrachtet.	
9	Leckluft	LEA	Grau	Unbeabsichtigter Luftstrom durch undichte Stellen der Ank	
10	Infiltration	INF	Grún	Lufteintritt in das Gebäude über Undichtheiten in der Gebäude- hülle, unbeabsichtigte Luft von draußen	
11:	Exfiltration	EXF	Grau	Luftaustritt aus dem Gebäude über Undichtheiten in der Gebäu dehülle, unbeabsichtigt an die Außenluft	
12	Mischluft	MA	Luftströme mit verschie- denen Far- ben	Luft, die zwei oder mehr Luftströme enthält	
1,1	Außenluft Einzel- raum	SRO	Grün	Unbehandelte Luft, die von außen in das Einzelraum- Luftbehandlungsgerät oder eine Öffnung eines Einzelraums einströmt	
2.1	Zuluft Einzelraum	SRS	Blau	Luftstrom, der in den behandelten Raum eintritt	
5.1	Abluft Einzelraum	SET	Gelb	Luftstrom, der den behandelten Raum verlässt und in ein Einzelraum-Luftbehandlungsgerät einströmt	
7.1	Fortluft Einzelraum	SEH	Braun	Luftstrom, der aus einem Einzelraum-Luftbehandlungsgerät in: Freie strömt	


Quelle: DIN EN 16798-3:2017-11

Quelle: https://www.ki-portal.de/wp-content/uploads/featured_image/30_36_wissen_trogisch_i.pdf

MISCHLÜFTUNG VS. SCHICHTENSTRÖMUNG


Mischströmung

- Durchmischung der Raumluft
- Einbringung mit hohem Impuls
- Geruchs- und Schadstoffabführung durch Verdünnung

Schichtenströmung

- Gezielte impulsarme Einbringung in Aufenthalts-, Wärmequellenbzw. Schadstoffquellenbereich
- Ausnutzen der natürlichen Thermik

LUFTFÜHRUNG

Raumluftströmung	Turbulenzarme Verdrängungsströmung	Schichtenströmung	Turbulente Mischströmung	Örtliche Mischströmung	
Zulufteinbringung (Beispiele)	großflächig:	Schichtluft- durchlässe (Boden)	Draller, Schlitze	Boden-draller	
	Lüftungs- boden ++++++++++		linear: Schlitze, Gitter	linear. † † † † † † † † † † † † † † † † † † †	
Zuluftge- schwindigkeit	gering (0,20 0,45 m/s)	gering (0,15 0,45 m/s)	mittel - hoch (1,5 5 m/s)	diffus: mittel - hoch (1,0 4 m/s) linear: mittel (1,0 1,5 m/s)	
spez. Luftvolumen-ströme	sehr hoch (700 1600 m³/(h m²))	Komfortbereich: mittel (6 25 m³/(h m²)) Industriebereich: hoch (20 200 m³/(h m²))	Komfortbereich: diffus: mittel (625 m³/(h m²)) linear: gering - mittel (620 m³/(h m²))	Komfortbereich: mittel - hoch (6 35 m³/(h m²)) Industriebereich: diffus: hoch (20 200 m³/(h m²))	
max. Zuluftunter- temperaturen	gering (2 4 K)	gering (2 5 K zur Zuluftschicht)	diffus: groß (2 10 (12) K) linear: mittel (2 6 (8) K)	diffus, linear: mittel (2 6 K zum Aufenthaltsbereich)	
Stoffbelastungsgrad $\mu_{\mathcal{S}}$	sehr gut: < 0,2	sehr gut: 0,2 - 0,7	mäßig: 0,9 - 1,1	gut: 0,7 - 1,0	
Lüftungseffektivität ε_V	sehr gut: > 5	sehr gut: 5,0 – 1,4	mäßig: 1,1 - 0,9	gut: 1,4 - 1,0	

BESTIMMUNG AUßENLUFTMENGE GEMÄß ASR

ASR 5 (4.2.1 Außenluftstrom)

- 20-40 cbm/h Person bei überwiegend sitzender Tätie
- 40-60 cbm/h Person bei überwiegend nicht sitt Tätigkeit
- über 65 cbm/h Person bei schwer
- Zum jeweiligen unter ausenluftstrom sind für zusät auch belästi e Wärmelast, starken Anteil den anwesenden Personen, zusenluftmengen vorzusehen. Dabei en ant der Belastung durch Tabakrauch ein Außenluftstrom von 10 cbm/h Person oder der Belastung durch intensive Geruchsverschlechterung von 20 cbm/h Person.
- Die Außenluftströme können bei Außentemperaturen über 26 Grad Celsius bis 32 Grad Celsius und unter
 0 Grad Celsius bis - 12 Grad Celsius um höchstens 50 % linear vermindert werden.

ASR 3.6 (6.3 Außenluftvolumenstrom)

Der Außenluftvolumenstrom ist nach dem Stand der Technik so auszulegen, dass Lasten (Stoff-, Feuchte-, Wärmelasten) zuverlässig abgeführt werden und die CO2-Konzentration von 1000 ppm (siehe Tabelle 1) eingehalten wird.

CO ₂ – Konzentration [ml/m³] bzw. [ppm]	Maßnahmen
< 1000	Keine weiteren Maßnahmen (sofern durch die Raumnutzung kein Konzentrationsanstieg über 1000 ppm zu erwarten ist)
1000 - 2000	 Lüftungsverhalten überprüfen und verbessern Lüftungsplan aufstellen (z. B. Verantwortlichkeiten festlegen) Lüftungsmaßnahme (z. B. Außenluftvolumenstrom oder Luftwechsel erhöhen)
> 2000	 Weitergehende Maßnahmen erforderlich (z. B. verstärkte Lüftung, Reduzierung der Personenanzahl im Raum)

BERECHNUNGSVERFAHREN AUßENLUFTMENGE NACH DIN EN 16798-1:2022-03 1/4

Die Auslegungsparameter für die Raumluftqualität sind unter Anwendung eines oder mehrerer der folgenden Verfahren zu bestimmen:

- Verfahren 1: auf der Grundlage der wahrgenommenen Luftqualität
- Verfahren 2: unter Einhaltung von Grenzwerten für einzelne Stoffe
- Verfahren 3: auf der Grundlage vorgegebener Lüftungsvolumenströme
 - Verfahren 3 laut nationalem Anhang nicht anzuwenden (Nichtwohngebäude)

BERECHNUNGSVERFAHREN AUßENLUFTMENGE NACH DIN EN 16798-1:2022-03 2/4

Verfahren 1 auf der Grundlage der wahrgenommenen Luftqualität

$$q_{tot} = n \cdot q_p + A_R \cdot q_B$$

 q_{tot} : erforderlicher Gesamt-Außenluftvolumenstrom $[m^3/s]$

n: Anzahl der Personen [-]

 q_p : personenbezogener spez. Außenluftvolumenstrom $[m^3/s]$

 A_R : Grundfläche $[m^2]$

 q_B : gebäudebezogener spezifischer Außenluftvolumenstrom $[m^3/s]$

Kategorie	Außenluftvolumenstrom l/s je Person	Sehr Schadstoffarmes Gebäude $l/s \cdot m^2$	Schadstoffarmes Gebäude $l/s \cdot m^2$	Nicht Schadstoffarmes Gebäude $l/s \cdot m^2$
IEQ I	10	0,5	1,0	2,0
IEQ II	7	0,35	0,7	1,4
IEQ III	4	0,2	0,4	0,8
IEQ IV	2,5	0,15	0,3	0,6

BERECHNUNGSVERFAHREN AUßENLUFTMENGE NACH DIN EN 16798-1:2022-03 3/4

Verfahren 2 unter Einhaltung von Grenzwerten für einzelne Stoffe

$$Q_h = \frac{G_h}{C_{h,i} - C_{h,o}} \cdot \frac{1}{\varepsilon_v}$$

$$\mu_S = \frac{1}{\varepsilon_v} = \frac{(c_{RL} - c_{ZU})}{(c_{AB} - c_{ZU})}$$

 Q_h : der für die Einhaltung des Grenzwertes erforderliche Außenluftvolumenstrom $[m^3/s]$

 G_h : die Emission des Stoffs [$\mu m/s$]

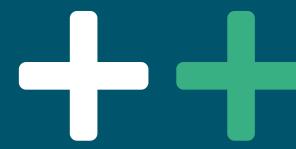
 $C_{h,i}$: der Grenzwert für den Stoff [$\mu m/m^3$]

 $C_{h,o}$: die Konzentration des Stoffs in der Zukunft $[\mu m/m^3]$

 ε_v : die Lüftungseffektivität

Hängt von der Luftführung ab. Je höher die Luftführung, desto kleiner der notwendige Volumenstrom!

BERECHNUNGSVERFAHREN AUßENLUFTMENGE NACH DIN EN 16798-1:2022-03 4/4


Standardauslegungswerte für die CO₂-Konzentration oberhalb der Konzentration und Außenluft nach DIN EN 16798-1:2022-03

Kategorie	Entsprechende ${ m CO}_2$ -Konzentration oberhalb der Konzentration in Außenluft, in ppm, für unangepasste Personen*
IEQ I	350
IEQ II	550
IEQ III	900
IEQ IV	1350

^{*} Bei CO_2 -Konzentrationen in der Raumluft von mehr als 1000 ppm sind bei Arbeitsstätten die Maßnahmen nach der Technischen Regel für Arbeitsstätten Lüftung (ASR A3.6) zu beachten.

POTENTIALE ZUR EFFIZIENZSTEIGERUNG

POTENTIALE ZUR EFFIZIENZSTEIGERUNG

ENERGIEBEDARF RLT-ANLAGEN – BERECHNUNGSFORMELN

Luftbedarf:
$$W_{vent} = \frac{1}{\eta} \cdot \dot{V} \cdot \Delta p \cdot t$$

Temperatur:
$$Q_{H/K} = \rho \cdot c_p \cdot \dot{V} \cdot \Delta T \cdot t$$

Feuchte:
$$Q_{Bef/Entf} = \rho \cdot \dot{V} \cdot \frac{\Delta x}{1+x} \cdot r \cdot t$$

Volumenstrom:

 Minimierung Volumenstrom führt zu Einsparung Strom und Wärme(Kälte

Betriebszeit:

- Minimierung der Betriebszeit (Anpassung reale Nutzungszeit)
- Anpassung durch Sensoren (z. B. Präsenzmelder, Sensoren für die Konzentrationserfassung)

Differenzdruck:

Beeinflusst durch installierte
 Komponenten (intern) +
 angeschlossenes Kanalnetz (extern)

POTENTIALE ZUR EFFIZIENZSTEIGERUNG

ENERGIEBEDARF RLT-ANLAGEN – BERECHNUNGSFORMELN

Luftbedarf:
$$W_{vent} = \frac{1}{\eta} \cdot \dot{V} \cdot \Delta p \cdot t$$

Temperatur:
$$Q_{H/K} = \rho \cdot c_p \cdot \dot{V} \cdot \Delta T \cdot t$$

Feuchte:
$$Q_{Bef/Entf} = \rho \cdot \dot{V} \cdot \frac{\Delta x}{1+x} \cdot r \cdot t$$

Wirkungsgrad:

- Bestimmt durch drei Einzelwirkungsgrade
 - η_V = Wirkungsgrad Ventilator
 - η_M = Motorwirkungsgrad
 - η_A = Antriebs- und Regelungswirkungsgrad

Temperaturänderung:

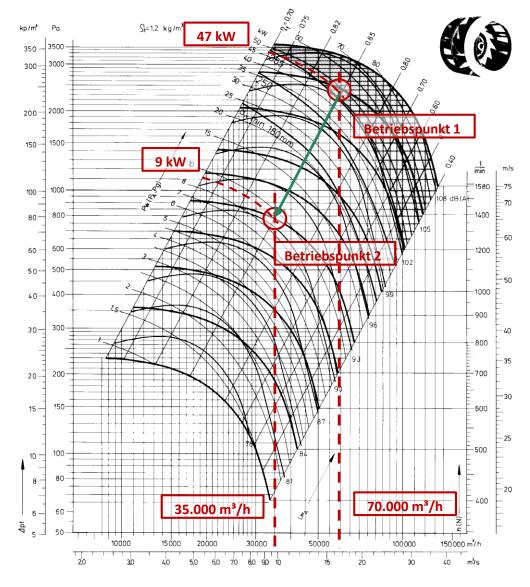
Feuchtegehalt:

- Be- und Entfeuchtung aufwändig
- Notwendigkeit und Sollwerte pr

 üfen

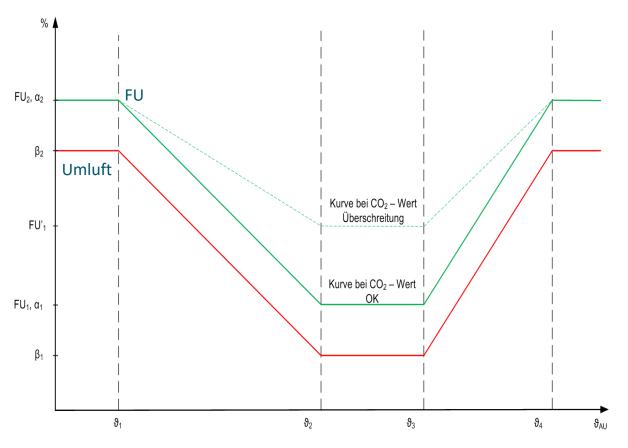
Anpassen des Volumenstroms

BEISPIEL VOLUMENSTROMREDUZIERUNG


Reduzierung Luftmenge

70.000 auf 35.000 m³/h

Leistungsbedarf Antriebswelle


47 kW auf 9 kW (19%)

- Nach der Theorie sollten es 12,5 % sein
- Elektrische Leistung reduziert sich ebenfalls auf 19 %

Beispiel Volumenstromänderung, Kennlinie Gebhardt

WITTERUNGSGEFÜHRTE REGELUNG

- Ansteuerung FU (Drehzahlregelung) und Umluftklappe in Abhängigkeit der Außentemperatur
- Zusätzliche Überwachung CO2
- Berechnete Einsparungen

- Strom: 31%

Wärme: 47%

Parametrierbare, witterungsabhängige Volumenstrom-Kurve mit zusätzlicher CO₂-Überwachung

STEIGERN DER LÜFTUNGSEFFEKTIVITÄT

Fall – Stofflast CO_2 ; Mischlüftung [Verfahren 2; DIN EN 16798-1]

$$q_{v,SUP} = \frac{q_{m,E}}{c_{IDA} - c_{SUP}} \cdot \frac{1}{\varepsilon_v}$$

$$q_{v,SUP} = \frac{q_{m,E}}{c_{IDA} - c_{SUP}} \cdot \frac{1}{\varepsilon_v}$$

$$q_{v,SUP} = \frac{120 \cdot 0.03 \, m_{CO_2}^3 / h}{550 \cdot 10^{-6} \, m_{CO_2}^3 / m_{Luft}^3} \cdot \frac{1}{1}$$

$$q_{v,SUP} = 6545 \,\mathrm{m}^3/\mathrm{h}$$

Fall – Stofflast CO_2 ; Quelllüftung [Verfahren 2; DIN EN 16798-1]

$$q_{v,SUP} = \frac{q_{m,E}}{c_{IDA} - c_{SUP}} \cdot \frac{1}{\varepsilon_v}$$

$$q_{v,SUP} = \frac{q_{m,E}}{c_{IDA} - c_{SUP}} \cdot \frac{1}{\varepsilon_v}$$

$$q_{v,SUP} = \frac{120 \cdot 0.03 \, m_{CO_2}^3 / h}{550 \cdot 10^{-6} \, m_{CO_2}^3 / m_{Luft}^3} \left(\frac{1}{1.5}\right)$$

$$q_{v,SUP} = 4363 \text{ m}^3/\text{h}$$

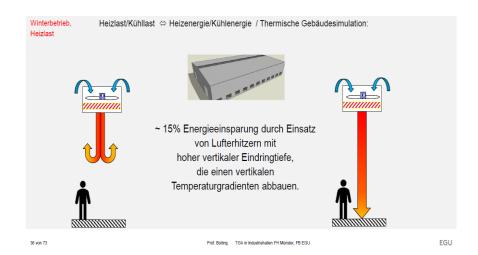
 $q_{v,SUP}$: Zuluftvolumenstrom in m³/s

 $q_{m,E}$: Massenstrom CO_2 , der durch die Schadstoff-

quelle (z.B. Menschen) freigesetzt wird [mg/s] c_{IDA} : CO_2 -Konzentration im Raumluft [mg/s] c_{SIIP} : CO_2 -Konzentration im Zuluftstrom [mg/s]

 ε_n : Lüftungseffektivität

Berechnet für eine Personenzahl von 120


Kategorie	Atemluftvolumenstrom [m³/h]	Kohlendioxidabgabe [l/h]	Sauerstoffverbrauch [l/h]
Körperliche Ruhe	0,300	12	14
Aktivitätsstufe I	0,375	15	18
Aktivitätsstufe II	0,575	23	27
Aktivitätsstufe III	0,750	30	35
Aktivitätsstufe IV	> 0,750	> 30	>35

Kategorie	Entsprechende ${ m CO}_2$ -Konzentration oberhalb der Konzentration in Außenluft, in ppm, für unangepasste Personen *
IEQ I	350
IEQ II	550
IEQ III	900
IEQ IV	1350

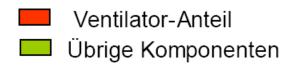
STEIGERN DER LÜFTUNGSEFFEKTIVITÄT

Handlungsempfehlungen:

- Auswahl Lüftungssystem bei Neuinstallation > möglichst Schicht- oder Quelllüftung, Mischlüftung wirkt sich negativ auf die Lüftungseffektivität aus
- Überprüfung der Luftführung
 - Funktioniert die Luftführung?
 - Gibt es Kurzschlüsse (Abluft neben Zuluft)?
 - Kommt die Luft nach unten bzw. in den relevanten Bereich?
 - Wird "nur" der Deckenbereich beheizt?

BESEITIGUNG DER LECKAGEN

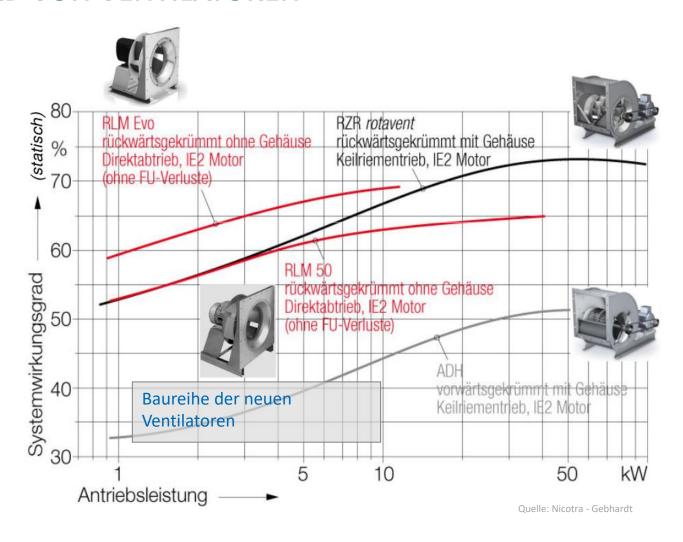
- Besonders wichtig bei älteren Anlagen
- Verluste bis zu 20 % durch
 - Veraltete Dichtungen
 - Nicht verschlossene Messöffnungen
 - **–**
- Hohe Verlustkosten insbesondere bei bereits konditionierter Luft
- Beseitigung von Leckagen in Wartungsplan verankern



Effizienzsteigerung Luftförderung

ENERGIEEINSPARPOTENTIALE - EFFIZIENZSTEIGERUNG LUFTFÖRDERUNG

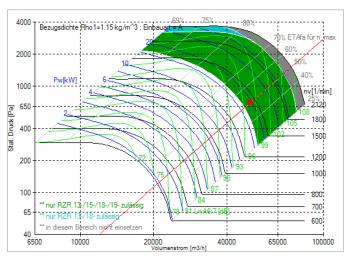
ANTEIL LUFTFÖRDERUNG AN BETRIEBSKOSTEN

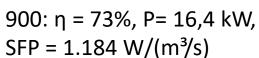


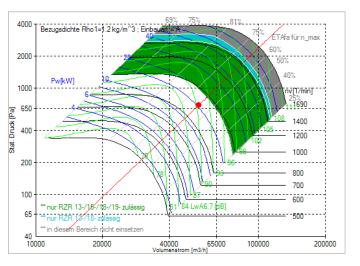
Quelle: Fa. Gebhardt

ENERGIEEINSPARPOTENTIALE - EFFIZIENZSTEIGERUNG LUFTFÖRDERUNG

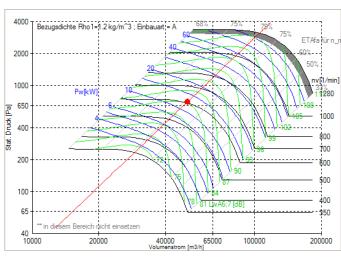
WIRKUNGSGRAD VON VENTILATOREN




KORREKTE WAHL DES VENTILATORS


Ist-Situation: $V = 50.000 \text{ m}^3/\text{h}$; $\Delta p = 700 \text{ Pa}$; $\eta = 40\%$; SFP = ca. 1.850 W/(m³/s)

Alternativen für den Soll-Zustand



710: $\eta = 50\%$, P= 22,5 kW, SFP = 1.623 W/(m³/s)

1120: $\eta = 78\%$, P= 14,3 kW, SFP = 1.030 W/(m³/s)

Einsparung: 36%

12%

44%

ENERGIEEINSPARPOTENTIALE - EFFIZIENZSTEIGERUNG LUFTFÖRDERUNG

DRUCKVERLUSTE REDUZIEREN

- Bauteile mit veränderlichem Druckverlust (Filter) regelmäßig warten.
- Druckverlust abhängig von der Strömungsgeschwindigkeit:

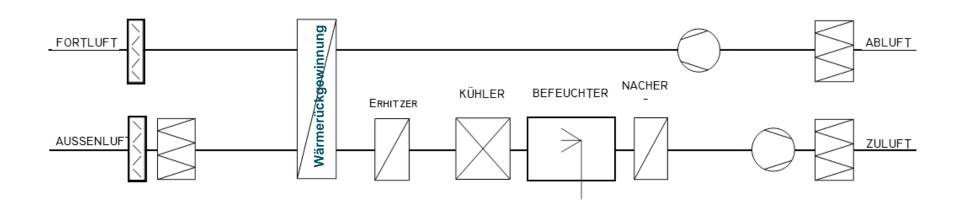
$$\Delta p \sim v^2$$

 Geschwindigkeiten möglichst klein wählen (z.B. Luftleitung ≤ 5 m/s).

Ggf. UV-Entkeimung statt HEPA-filter

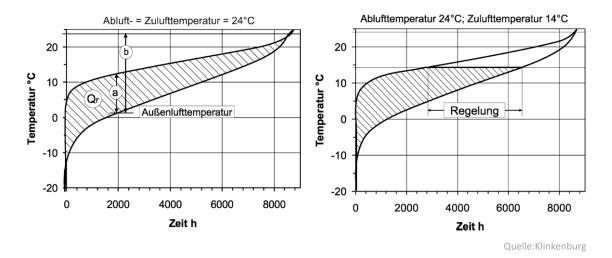
Bauteil	Niedrig [Pa]	Normal [Pa]	Hoch [Pa]	
Luftleitungssystem Zuluft	200	300	600	
Luftleitungssystem Fortluft	100	200	300	
Heizregister	40	80	100	
Kühlregister	100	140	200	
WRG Einheit Klasse H3	100	150	250	
WRG Einheit Klasse H2-H1	200	300	400	
Befeuchter	50	100	150	
Luftwäscher	100	200	300	
Luftfilter F5-F7 (Enddruck)	100	150	250	
Luftfilter F8-F9 (Enddruck)	150	250	400	
HEPA-Filter	400	500	700	
Gasfilter	100	150	250	
Schalldämpfer	30	50	80	

Wärmerückgewinnung und Abwärmenutzung



WÄRMERÜCKGEWINNUNG NUTZEN ODER OPTIMIEREN

Wärmerückgewinnung in RLT-Anlagen sind alle Maßnahmen zur Wiedernutzung der thermischen Energie der Fortluft [vgl. Rietschel, 2008, Raumklimatechnik]


Aufbau/Funktion

- Ventilatoren f\u00f6rdern Luft in und aus dem Geb\u00e4ude
- Teil der Abwärme wird auf die angesaugte Außenluft übertragen
- Ausgetauschte Wärme wird als Rückwärme bezeichnet

WÄRMERÜCKGEWINNUNG – DEFINITION RÜCKWÄRMEZAHL

$$\Phi = \eta_{t_1} = \frac{\Delta t_1}{\Delta t_{max}} = \frac{t_{Zu} - t_{Au}}{t_{Ab} - t_{Au}}$$

Rückwärmezahl (auch Temperaturänderungsgrad, Temperaturwirkungsgrad):

- Anteil der rückgewonnen Wärme zur theoretisch rückgewinnbaren Wärme
- Entspricht nicht der prozentualen Energieeinsparung

WRG begrenzt durch:

- Vermeidung zu hoher Zulufttemperatur
- Vermeidung zu kalter Fortlufttemperatur (Frostgefahr abluftseitig)

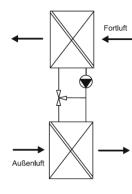
WRG auch als Kälterückgewinnung einsetzbar

50

ENERGIEEINSPARPOTENTIALE - WÄRMERÜCKGEWINNUNG UND ABWÄRMENUTZUNG

WÄRMERÜCKGEWINNUNG – ÜBERSICHT

Luft/Luft-Wärmetauscher (Rekuperator)


Rotations-Wärmerückgewinner

Höhere Rückwärmezahl = höherer Rückgewinn

Kreislaufverbundsystem (Regenerator)

Rückwärmezahl: 0,5 - 0,7

- · Wärmetausch über Trennflächen
- Kein Stoffaustausch
- Kondensation und Vereisung möglich
- Ausnahme dampfdurchlässige Membran als Trennfläche
- Trennflächen als Platten oder Rohre

Rückwärmezahl: 0,6 – 0,8 Rückfeuchtezahl 0,1-0,7

- Wärmemenge wird zwischengespeichert
- Wärmeträger: Speichermasse aus keramischen, mineralischen oder metallischen Material, auch Papier oder Kunststoff, rotorförmig angeordnet
- Luftströme räumlich beieinander

Rückwärmezahl: 0,3 – 0,8

- Wärmeaustausch über Trennflächen und zusätzlichen Wärmeträger Wasser, Kältemittel oder Dampf
- Wärmerückgewinner setzt sich aus 2 Rekuperatoren zusammen

ENERGIEEINSPARPOTENTIALE - WÄRMERÜCKGEWINNUNG UND ABWÄRMENUTZUNG

ABWÄRMENUTZUNG - KÜHLWASSER-RÜCKLAUF

Kühlwasser – Rücklauf ist häufig eine gut nutzbare Abwärmequelle mit Temperaturen um 30°C

Auch Temperaturen von 25°C teilweise noch nutzbar

Notwendige Register wird bis zu 50% größer als übliche Kühlregister.

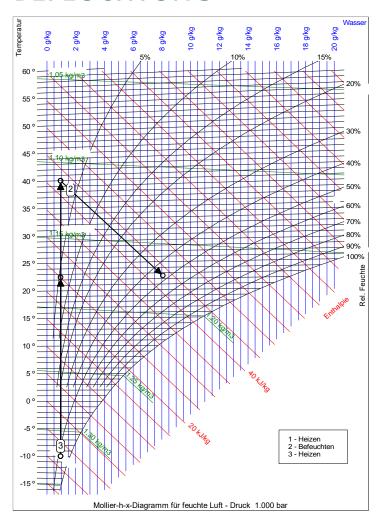
		Gebäude 1				Cumma
Wärmequelle Kühlwasser		Bereich 1	Bereich 2	Bereich 3	Bereich 4	Summe
Nutzbare Abwärme	MWh/a	914	1.246	1.671	354	3.520
Abwärmeangebot	MWh/a	25.115	25.115	25.115	25.115	25.115
Wärmebedarf	MWh/a	933	1.303	2.006	358	4.600
max. Leistung	kW	378	479	1.088	150	2.035
Vollbenutzungsstunden	h/a	2.418	2.602	1.536	2.358	1.730
Deckungsgrad	%	97,9%	95,6%	83,3%	99%	76,5%

Anpassung Sollwerte

ZULUFT-TEMPERATUREN

Absenkung Zulufttemperatur von 20°C auf 19°C

- Spezifischer Wärmebedarf ohne WRG 32,9 kWh/(m³/h)/a bei 20°C
- Spezifischer Wärmebedarf ohne WRG 30,3 kWh/(m³/h)/a bei 19°C
- Einsparung 8%


Temperaturabsenkung am Wochenende bzw. in Ruhezeiten prüfen

Untere Grenztemperatur:

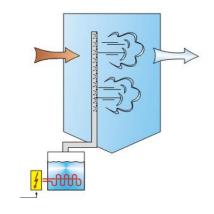
- bei überwiegend sitzender Tätigkeit: 19 °C
- bei überwiegend nicht sitzender Tätigkeit: 17 °C
- bei schwerer k\u00f6rperlicher Arbeit: 12 \u00acc
- in Büroräumen: 20 °C
- in Verkaufsräumen: 19 °C
- in Waschräumen mit Duschen: 24 °C

ENERGIEEINSPARPOTENTIALE - ANPASSEN SOLLWERTE

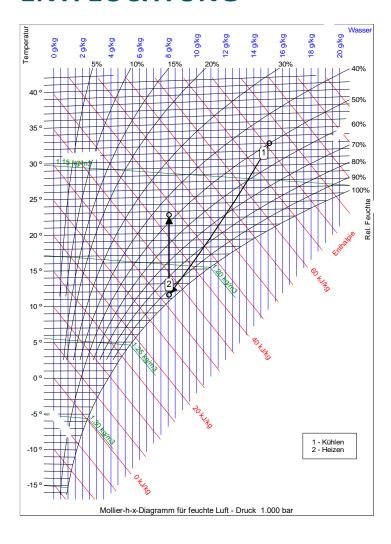
BEFEUCHTUNG

Beispiel Befeuchten mit Wasser

- Luftmassenstrom: 10.000 kg/h
- Außenluftzustand: -10°C, 60% r.F.
- Befeuchtung um 7 g/kg auf 22,5°C, 47 % rel. Feuchte


Heizen für Befeuchtung: 140 kW

Heizen nur auf 22,5°C:
 90 kW


Befeuchten auf 40% r.F.: 130 kW

Mögliche Alternativen:

- Dampfbefeuchtung (häufig elektrisch beheizt)
- Energieintensiv + teuer

ENTFEUCHTUNG

Beispiel Entfeuchtung mit Kälte

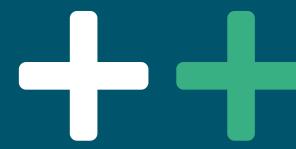
- Luftmassenstrom: 10.000 kg/h
- Außenluftzustand: +32°C, 50% r.F.
- Luftkonditionierung auf 22,5°C, ca. 50% r.F.:
 - Kühlen für Entfeuchtung: 108 kW
 - Heizen auf 22,5° C: 31 kW
- Bei Konditionierung auf 22,5 °C, 60% r.F. :
 - Kühlen für Entfeuchtung: 88 kW
 - Heizen auf 22,5° C: 21 kW

56

Begrenzung Stofflasten

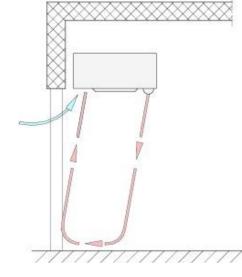
VERMEIDUNG UND BEGRENZUNG VON STOFFLASTEN

- ✓ Unbelastete Außenluft verwenden
 - Lage der Ansaugung beachten
- ✓ Keine Schadstoffe einsetzen
 - Ersatzstoffe verwenden
- ✓ Absaugung direkt an den Quellen
 - Effiziente Einzelabsaugungen
- ✓ Separate Zonen schaffen
 - räumliche Abtrennung, Schleusen, Druckzonen
- ✓ Regelung nach Stofflasten
 - CO2- und VOC-Sensoren einsetzen
- ✓ Quelllüftung statt Mischlüftung
 - Gestaltung unterschiedlicher Luftqualitäten im Raum

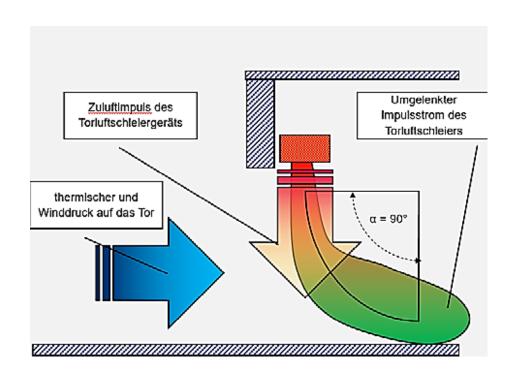

Bsp: Spinde mit Ab- und Umluftanschluß

Quelle: Airflow Lufttechnik GmbH www.airflow.de, 2021

Torluftschleieranlagen


TORLUFTSCHLEIERANLAGEN - AUFGABE

Dauerhaft geöffnete Türen und Tore verursachen


- Entweichung der Raumtemperaturen und Störung des Raumklimas
- Eintrag von Staub, Schmutz, Insekten und verunreinigter Luft im Raum

Torluftschleieranlagen trennen mittels Gebläse Luftmassen durch eine Barriere aus strömender Luft voneinander und vermeiden so deren Austausch.

Mit Torluftschleieranlagen können unnötige Energieverluste und ungewünschte Luftzüge durch geöffnete Hallentore vermieden werden!

TORLUFTSCHLEIERANLAGEN – WIRKPRINZIP & RECHENBEISPIEL

$$\dot{Q} = A_{Verlust} \cdot c_{Schleier} \cdot P_A \cdot c_p \cdot \Delta T$$

Zusammenhang Umlenkung des Zuluftschleiers

"Entspricht die Kraft, die für eine exakte Umlenkung des Luftschleiers auf der Kreisbahn mit dem Radius = Türöffnungshöhe benötigt wird, der Druckkraft auf die Öffnung, gilt diese als hinreichend abgeschottet."

$$\Delta p = g \cdot h_{Tor} \cdot P_A \cdot \left(1 - \frac{T_A}{T_I}\right)$$

$$c_{Schleier} = \sqrt{\frac{A_{Tor}}{A_{Schleier} \cdot P_A}} \cdot \Delta p$$

ENERGIEEINSPARPOTENTIALE - TORLUFTSCHLEIERANLAGEN

TORLUFTSCHLEIERANLAGEN – WIRKPRINZIP & RECHENBEISPIEL

Beispiel:

- Toröffnung H x B : 4,5 x 3 m
- Innentemperatur 15°C
- Außentemperatur 0°C

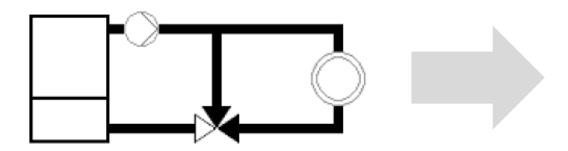
$$\Delta p = 9.81 \frac{m}{s^2} \cdot 4.5m \cdot 1.27 \frac{kg}{m^3} \cdot \left(1 - \frac{273.15 \, K}{288.15 \, K}\right) = 2.92 \, Pa$$

$$c_{Schleier} = \sqrt{\frac{13.5 \, m^2}{6.75 m^2 \cdot 1.27 \frac{kg}{m^3}} \cdot 2.92 \frac{kg}{s^2 m}} = 2.144 \frac{m}{s}$$

Theoretische Verlustleistung durch einströmende Kaltluft:

$$\dot{Q} = 4,5m^2 \cdot 2,144\frac{m}{s} \cdot 1,27\frac{kg}{m^3} \cdot 1,006\frac{kJ}{kgK} \cdot 15K$$

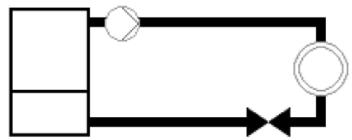
$$\dot{Q} = 185 \text{ kW}$$



Effizienzsteigerung Versorgungsmedien

HYDRAULIK REGISTER – 1

Umlenkschaltung


Einsatz

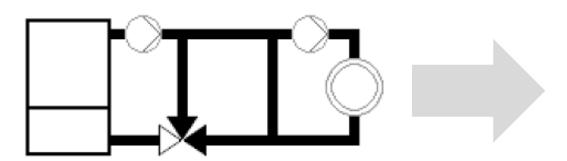
- Luftkühler mit Entfeuchtung
- Lufterwärmer ohne Einfriergefahr

Eigenschaften

- Geringe Temperaturspreizung Vor- und Rücklauf
- Durchfluss lastunabhängig konstant
- Effizienz Wärme-/Kälteerzeuger sinkt
- Geringe Verzögerung beim Anfahren

Drosselschaltung

Einsatz

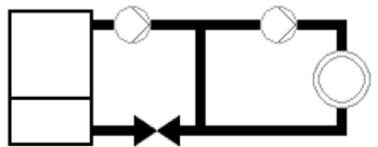

- Luftkühler mit Entfeuchtung
- Lufterwärmer ohne Einfriergefahr

Eigenschaften

- hohe Temperaturspreizung Vor- und Rücklauf
- Durchfluss lastabhängig
- Effizienz Wärme-/Kälteerzeuger steigt
- Zeitliche Verzögerung beim Anfahren

HYDRAULIK REGISTER – 2

Einspritzschaltung mit Dreiwegeventil


Einsatz

- Luftkühler ohne geregelte Entfeuchtung
- Lufterwärmer mit Einfriergefahr

Eigenschaften

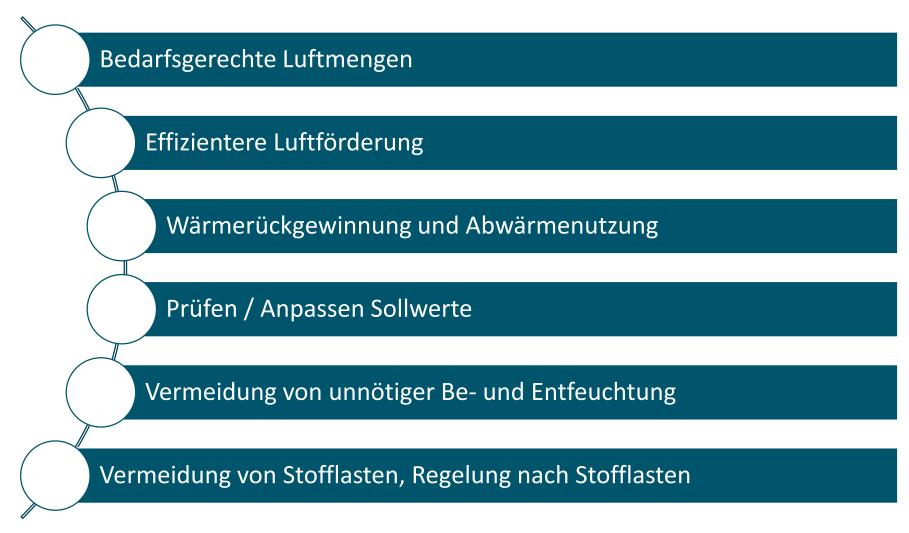
- Geringe Temperaturspreizung Vor- und Rücklauf
- Durchfluss Erzeugerkreis lastunabhängig konstant
- Effizienz Wärme-/Kälteerzeuger sinkt
- Geringe Verzögerung beim Anfahren

Drosselschaltung

Einsatz

- Luftkühler ohne geregelte Entfeuchtung
- Lufterwärmer mit Einfriergefahr

Eigenschaften


- Hohe Temperaturspreizung Vor- und Rücklauf
- Durchfluss Erzeugerkreis lastabhängig
- Effizienz Wärme-/Kälteerzeuger steigt
- Zeitliche Verzögerung beim Anfahren

FAZIT UND AUSBLICK

TYPISCHE OPTIMIERUNGSPOTENTIALE

WEITERE INFORMATIONEN

Besuchen Sie die Kampagnen-Website für weitere Informationen & Unterlagen

Online-Checklisten

Vorteilsrechner

Online-Seminare

Nächste Termine:

Anmeldung unter https://plusplusprinzip.de/online-seminare/ möglich

VIELEN DANK

Das PlusPlus-Prinzip – Eine Klimaschutzkampagne der deutschen Ernährungsindustrie

www.plusplusprinzip.de

Dietmar Zahn

ÖKOTEC Energiemanagement GmbH EUREF-Campus, Haus 13 Torgauer Straße 12-15 10829 Berlin

www.oekotec.de

Gefördert durch:

Das PlusPlus-Prinzip – Eine Klimaschutzkampagne der deutschen Ernährungsindustrie

